Merci de patienter durant le chargement de la page

Chargement de la page en cours...

Abonnez-vous aux flux RSS EquaThEque

Mon espace

J'ai perdu mon mot de passe

Je n'ai pas de compte


13 équations sont publiées dans la discipline ---.

Dérivée successive d'une fonction d'ordre m

`d^n/dx^n x^m = m(m-1)...(m-n+1)x^(m-n)`
Retrouvez plus d'informations sur Wikipédia
Code AsciiMath-Latex :
d^n/dx^n x^m = m(m-1)...(m-n+1)x^(m-n)
Equation à l'état "proposée"
Publication par "david.grima" le 22/01/2009 à 19h14

Dérivée successive d'une fonction d'ordre de dérivation

`d^n/dx^n x^n = n!`
Retrouvez plus d'informations sur Wikipédia
Code AsciiMath-Latex :
d^n/dx^n x^n = n!
Equation à l'état "proposée"
Publication par "david.grima" le 22/01/2009 à 19h14

Dérivée successive d'un polynôme d'ordre de dérivation

`d^n/dx^n (a_0 x^n + a_1x^(n-1) + ... + a_n)= a_0 n!`
Retrouvez plus d'informations sur Wikipédia
Code AsciiMath-Latex :
d^n/dx^n (a_0 x^n + a_1x^(n-1) + ... + a_n)= a_0 n!
Equation à l'état "proposée"
Publication par "david.grima" le 22/01/2009 à 19h14

Dérivée successive d'une exponentielle

`d^n/dx^n e^x = e^x`
Retrouvez plus d'informations sur Wikipédia
Code AsciiMath-Latex :
d^n/dx^n e^x = e^x
Equation à l'état "proposée"
Publication par "david.grima" le 22/01/2009 à 19h14

Dérivée successive d'une exponentielle de fonction affine

`d^n/dx^n e^(mx) = m^n e^(mx)`
Retrouvez plus d'informations sur Wikipédia
Code AsciiMath-Latex :
d^n/dx^n e^(mx) = m^n e^(mx)
Equation à l'état "proposée"
Publication par "david.grima" le 22/01/2009 à 19h14

Dérivée successive d'une exponentielle de base a

`d^n/dx^n a^x = a^x (log a)^n`
Retrouvez plus d'informations sur Wikipédia
Code AsciiMath-Latex :
d^n/dx^n a^x = a^x (log a)^n
Equation à l'état "proposée"
Publication par "david.grima" le 22/01/2009 à 19h14

Dérivée successive d'un sinus

`d^n/dx^n sin x = sin(x + n pi/2)`
Retrouvez plus d'informations sur Wikipédia
Code AsciiMath-Latex :
d^n/dx^n sin x = sin(x + n pi/2)
Equation à l'état "proposée"
Publication par "david.grima" le 22/01/2009 à 19h14

Dérivée successive d'un cosinus

`d^n/dx^n cos x = cos(x + n pi/2)`
Retrouvez plus d'informations sur Wikipédia
Code AsciiMath-Latex :
d^n/dx^n cos x = cos(x + n pi/2)
Equation à l'état "proposée"
Publication par "david.grima" le 22/01/2009 à 19h14

Dérivée successive d'un sinus de fonction affine

`d^n/dx^n sin mx = m^n sin(mx + n pi/2)`
Retrouvez plus d'informations sur Wikipédia
Code AsciiMath-Latex :
d^n/dx^n sin mx = m^n sin(mx + n pi/2)
Equation à l'état "proposée"
Publication par "david.grima" le 22/01/2009 à 19h14

Dérivée successive d'un cosinus de fonction affine

`d^n/dx^n cos mx = m^n cos(mx + n pi/2)`
Retrouvez plus d'informations sur Wikipédia
Code AsciiMath-Latex :
d^n/dx^n cos mx = m^n cos(mx + n pi/2)
Equation à l'état "proposée"
Publication par "david.grima" le 22/01/2009 à 19h14